储氢材料是一种能可逆地吸收和释放氢气的材料。最早发现的是金属钯,1体积钯能溶解几百体积的氢气,但钯很贵,缺少实用价值。

储氢材料

随着工业的发展和人们物质生活水平的提高,能源的需求也与日俱增。由于近几十年来使用的能源主要来自化石燃料(如煤、石油和天然气等),而其使用不可避免地污染环境,再加上其储量有限,所以寻找可再生的绿色能源迫在眉睫。氢能作为一种储量丰富、来源广泛、能量密度高的绿色能源及能源载体,正引起人们的广泛关注。氢能的开发和利用受到美、日、德、中、加等国家的高度重视,以期在21世纪中叶进入“氢能经济(hydrogeneconomy)”时代。氢能利用需要解决以下3个问题:氢的制取、储运和应用,而氢能的储运则是氢能应用的关键。氢在通常条件下以气态形式存在,且易燃、易爆、易扩散,使得人们在实际应用中要优先考虑氢储存和运输中的安全、高效和无泄漏损失,这就给储存和运输带来很大的困难。

储氢方式

1、气态储氢

气态存储是对氢气加压,减小体积,以气体形式储存于特定容器中,根据压力大小的不同,气态储存又可分为低压储存和高压储存。氢气可以像天然气一样用低压储存,使用巨大的水密封储槽。该方法适合大规模储存气体时使用。由于氢的密度太低,应用不多。气态高压储存是最普通和最直接的储存方式,通过高压阀的调节就可以直接将氢气释放出来。普通高压气态储氢是一种应用广泛、简便易行的储氢方式,而且成本低,充放气速度快,且在常温下就可进行。但其缺点是需要厚重的耐压容器,并要消耗较大的氢气压缩功,存在氢气易泄漏和容器爆破等不安全因素。一个充气压力为15MPa的标准高压钢瓶储氢重量仅约为1.0%;供太空用的钛瓶储氢重量也仅为5%。可见,高压钢瓶储氢的能量密度一般都比较低。

2、液态储氢

氢气在一定的低温下,会以液态形式存在。因此,可以使用一种深冷的液氢储存技术———低温液态储氢。与空气液化相似,低温液态储氢也是先将氢气压缩,在经过节流阀之前进行冷却,经历焦耳-汤姆逊等焓膨胀后,产生一些液体。将液体分离后,将其储存在高真空的绝热容器中,气体继续进行上述循环。液氢储存具有较高的体积能量密度。常温、常压下液氢的密度为气态氢的845倍,体积能量密度比压缩储存要高好几倍,与同一体积的储氢容器相比,其储氢质量大幅度提高。液氢储存工艺特别适宜于储存空间有限的运载场合,如航天飞机用的火箭发动机、汽车发动机和洲际飞行运输工具等。若仅从质量和体积上考虑,液氢储存是一种极为理想的储氢方式。但是由于氢气液化要消耗很大的冷却能量,液化1kg氢需耗电4—10kW·h,增加了储氢和用氢的成本。另外液氢储存容器必须使用超低温用的特殊容器,由于液氢储存的装料和绝热不完善容易导致较高的蒸发损失,因而其储存成本较贵,安全技术也比较复杂。高度绝热的储氢容器是目前研究的重点。

3、固态储氢

固态储存是利用固体对氢气的物理吸附或化学反应等作用,将氢储存于固体材料中。固态储存一般可以做到安全、高效、高密度,是气态储存和液态储存之后,最有前途的研究发现。固态储存需要用到储氢材料,需找和研制高性能的储氢材料,成为固态储氢的当务之急,也是未来储氢发展和乃至整个氢能利用的关键。